Abstract

Network systems have become a ubiquitous modeling tool in many areas of science where nodes in a graph represent distributed processes and edges between nodes represent a form of dynamic coupling. When a network topology is already known (or partially known), two associated goals are, to derive estimators for nodes of the network, which cannot be directly observed or are impractical to measure; and to quantitatively identify the dynamic relations between nodes. We address both problems in the challenging scenario where only some outputs of the network are being measured and the inputs are not accessible. The approach makes use of the notion of $d$ -separation for the graph associated with the network. In the considered class of networks, it is shown that the proposed technique can determine or guide the choice of optimal sparse estimators. This article also derives identification methods that are applicable to cases where loops are present providing a different perspective on the problem of closed-loop identification. The notion of $d$ -separation is a central concept in the area of probabilistic graphical models, thus an additional contribution is to create connections between control theory and machine learning techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.