Abstract

The sparse signal reconstruction of compressive sensing can be accomplished by $${l_1}$$-norm minimization, but in many existing algorithms, there are the problems of low success probability and high computational complexity. To overcome these problems, an algorithm based on the alternating direction method of multipliers is proposed. First, using variable splitting techniques, an additional variable is introduced, which is tied to the original variable via an affine constraint. Then, the problem is transformed into a non-constrained optimization problem by means of the augmented Lagrangian multiplier method, where the multipliers can be obtained using the gradient ascent method according to dual optimization theory. The $${l_1}$$-norm minimization can finally be solved by cyclic iteration with concise form, where the solution of the original variable could be obtained by a projection operator, and the auxiliary variable could be solved by a soft threshold operator. Simulation results show that a higher signal reconstruction success probability is obtained when compared to existing methods, while a low computational cost is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.