Abstract
We propose a new learning framework, signal propagation (sigprop), for propagating a learning signal and updating neural network parameters via a forward pass, as an alternative to backpropagation (BP). In sigprop, there is only the forward path for inference and learning. So, there are no structural or computational constraints necessary for learning to take place, beyond the inference model itself, such as feedback connectivity, weight transport, or a backward pass, which exist under BP-based approaches. That is, sigprop enables global supervised learning with only a forward path. This is ideal for parallel training of layers or modules. In biology, this explains how neurons without feedback connections can still receive a global learning signal. In hardware, this provides an approach for global supervised learning without backward connectivity. Sigprop by construction has compatibility with models of learning in the brain and in hardware than BP, including alternative approaches relaxing learning constraints. We also demonstrate that sigprop is more efficient in time and memory than they are. To further explain the behavior of sigprop, we provide evidence that sigprop provides useful learning signals in context to BP. To further support relevance to biological and hardware learning, we use sigprop to train continuous time neural networks with the Hebbian updates and train spiking neural networks (SNNs) with only the voltage or with biologically and hardware-compatible surrogate functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.