Abstract

Study of ground vibrations resulted from blasting operations in mines and quarries is significant ecological aspect. In general, very lesser amount of explosive energy will be utilized in blasting process for breakage and creation of fragmentation, however the remaining will be squandered in the form of shock waves. Shock waves resulted from blasting operations cannot be entirely abolished, nonetheless can be lessened to the extent possible using an appropriate blasting methodology. Substantial work has been performed to detect ground vibrations for assessing the blast performance using the intensity of ground vibrations. Nevertheless, not much research has carried in the estimation of seismic energy and utilizing this energy for assessing the performance of blast rounds. In this paper, a Signal Processing based technique for the estimation of seismic energy dissipated at various distances is proposed. In total, 116 blast vibration events from Limestone Mines, 96 blast vibration events from Underground Coal Mine and 43 blast vibration events from Sandstone Mines were collected and respective signal processing analysis was carried out using Advanced Blastware and DADiSP software. Each vibration event in one direction carries about 2500 particle motion samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.