Abstract

In a bid to predict the propagation loss of electromagnetic signals, different models based on empirical and deterministic formulas have been used. In this study, different artificial neural network models which are very effective for prediction were used for the prediction of signal power loss in a microcell environment, Obio-Akpor, Port Harcourt, Nigeria. The signal power loss of the area is studied based on three artificial neural network algorithms with nine training functions. For the training of the artificial neural network, the input data were the distance from the transmitter and the signal power loss. Training of neural network is a demanding task in the field of supervised learning research. This is because the main difficulty in adopting artificial neural network is in finding the most suitable combination of learning and training functions for the prediction task. We compared the performance of three training algorithms in feedforward back propagation multi layer perceptron neural network. Nine training functions under three training algorithms were selected: the Gradient descent based algorithms, the Conjugate gradient based algorithms and the Quasi-Newton based algorithms. The work compared the training algorithms on the basis of mean square error, mean absolute error, standard deviation, correlation coefficient, regression on training and validation and the rate of convergence. The general performance of the training functions demonstrates their effectiveness to yield accurate results in short time. The conclusion on the training functions is based on the simulation results using measurement data from the micro environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.