Abstract

A new bandwidth-based approach for bus lane systems is proposed to optimize and coordinate signals and achieve bus progression along urban streets. Elements of the bus systems, such as bus speed, locations of bus stops, and dwell time, were considered to be relevant variables in the proposed approach, which is based on the classic MAXBAND program. First, to establish the bus progression model, intersections along the main street are categorized based on the locations of the bus stops. Second, mixed integer linear programming is employed to construct models that adhere to the following two basic principles: (a) optimizing the bandwidth for each group of intersections and (b) connecting the central lines of green bands for adjacent groups. A software package is then utilized to obtain the global optimal solutions for the model, and a time-space diagram can be created based on the results. Finally, a case study is presented to illustrate the application of the proposed approach. The results show that the proposed approach generates significant improvements in not only the operational performance of the bus lane system but also the average performances of all passengers in the entire traffic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.