Abstract

Starting from the solution of the kinetic equation, we have calculated the distribution function for the high-energy phonons, which are created by a short pulse of low-energy phonons moving in superfluid helium. This enables an explicit expression for the energy density flux to be derived. Hence we find the amplitude of the high-energy phonon signal as a function of time on a bolometer. We divide this signal into two halves: the ``head'' and ``tail'' which arrive before and after the peak signal, respectively. We analyze which high-energy phonons form the head and tail of the signal. The half-widths of head and tail are calculated and approximate formulas which describe the shapes of them are obtained. The partial contribution of high-energy phonons, with different momenta, to the total signal at different times is determined. These results are compared with the experimental results given in the preceding paper [R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. B 69, 144524 (2004)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.