Abstract

As the data rate of Low Power Double Data Rate 4 (LPDDR4) memory now exceeds 3.2 Gb/s, it is becoming more difficult to meet the target specifications. While testing has become of utmost importance, it is not viable to have a direct access to the signal pins in a package on package configuration due to the densely located array of solder balls; instead, a test interposer with an excellent electrical performance needs to be adopted to provide test access. In this paper, we first propose a novel test interposer scheme for testing LPDDR4 memory packages. For accurate testing without significant influence on the intrinsic signal path, the proposed test interposer is designed considering a number of signal integrity issues such as intersymbol interference, jitter, impedance matching, and crosstalk. Furthermore, by adopting silicone rubber sheet in place of soldering, the proposed test interposer enhances reusability of the packages with a fast setup time. Moreover, a reconstruction method is proposed that can reconstruct the voltage at application processor using the waveform captured on the test interposer, instead of probing at the ball gray array directly. Through a series of simulations and measurements, we experimentally verified the proposed test interposer. The proposed test interposer scheme can be widely adopted for testing of high-performance packages with its high accuracy and practicality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call