Abstract
With the development of low-K nanometer devices, the need for compatible packaging material is ever increasing. Liquid crystal polymer (LCP) is emerging as a promising material for RF, microwave, and millimeter-wave packaging. Its coefficient of thermal expansion can be matched to that of low-K die to ensure mechanical reliability. This paper, for the first time, characterizes the electrical performance of a wire bonded application-specific integrated circuit (ASIC) ball grid array (BGA) package based on LCP substrate technology for application in 10 Gb/s small form factor pluggable module (XFP) optical communication systems. Specifically, it compares the electrical performance of LCP to that of traditionally used FR4/spl I.bar/epoxy (FR-4) and Polyimide (PI) substrate materials. Findings show that at 10 GHz, insertion loss was decreased as much as 31% and 15% compared to FR-4 and PI, respectively. In particular, mode conversion was decreased by 66% and 42% compared to FR-4 and PI, respectively. Time delay was decreased by 10 and 4 ps compared to FR-4 and PI. No significant differences in power, ground coupling, and simultaneously switching output (SSO) noise at 10 GHz were observed. Based on the package structure used in this study, it was concluded that LCP offers superior electrical performance compared to FR/spl I.bar/4, PI, and is qualified as next generation substrate material for high data rate XFP BGA packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.