Abstract

The energy resolution of CdTe and CdZnTe detectors is usually limited by the poor transport properties of holes. Devices segmented into small pixels have been observed to exhibit improved energy resolutions. Simulations have shown that this small pixel effect is due to the fact that small pixels are mostly sensitive to carriers moving close to the pixel, within a distance of the order of the pixel size. In this paper, signals are calculated for CdZnTe strip detectors in order to determine to what extent a similar small electrode effect is produced by strips. The free carrier density distributions following the absorption of a /spl gamma/-ray are calculated by solving the continuity equations. Combined with the strip weighting field, this provides the signal induced in the strip. Simulations are made for various detector geometries and for both the anode and cathode strips. Simulated signals are compared with actual signals measured on CdZnTe detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.