Abstract

We developed a hybrid analog/digital lightwave neuromorphic processing device that effectively performs signal feature recognition. The approach, which mimics the neurons in a crayfish responsible for the escape response mechanism, provides a fast and accurate reaction to its inputs. The analog processing portion of the device uses the integration characteristic of an electro-absorption modulator, while the digital processing portion employ optical thresholding in a highly Ge-doped nonlinear loop mirror. The device can be configured to respond to different sets of input patterns by simply varying the weights and delays of the inputs. We experimentally demonstrated the use of the proposed lightwave neuromorphic signal processing device for recognizing specific input patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.