Abstract
Respiratory sound (RS) signals carry significant information about the underlying functioning of the pulmonary system by the presence of adventitious sounds. Although many studies have addressed the problem of pathological RS classification, only a limited number of scientific works have focused in multi-scale analysis. This paper proposes a new signal classification scheme for various types of RS based on multi-scale principal component analysis as a signal enhancement and feature extraction method to capture major variability of Fourier power spectra of the signal. Since we classify RS signals in a high dimensional feature subspace, a new classification method, called empirical classification, is developed for further signal dimension reduction in the classification step and has been shown to be more robust and outperform other simple classifiers. An overall accuracy of 98.34% for the classification of 689 real RS recording segments shows the promising performance of the presented method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.