Abstract

The nonstationary signal extraction problem is to estimate $s_t$ given observations on $z_t = s_t + n_t$ (signal plus noise) when either $s_t$ or $n_t$ or both is nonstationary. Homogeneous or explosive nonstationary time series described by models of the form $\delta(B)z_t = w_t$ where $\delta(B)$ has zeroes on or inside the unit circle and $w_t$ is stationary are considered. For certain cases, approximate solutions to the nonstationary signal extraction problem have been given by Hannan (1967), Sobel (1967), and Cleveland and Tiao (1976). The paper gives exact solutions in the forms of expressions for $E(s_t\mid\{z_t\})$ and $\operatorname{Var}(s_t\mid\{z_t\})$ (assuming normality) under two sets of alternative assumptions regarding the generation of $z_t, s_t$, and $n_t$. Extensions to signal extraction with a finite number of observations, to the nonGaussian case, and to the multivariate case are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.