Abstract

This paper presents an improved gas sensor based on the dual-excitation of quartz-enhanced photothermal spectroscopy (QEPTS) using a single quartz tuning fork (QTF) for signal detection. The silver coating on one side of the QTF was chemically etched to increase the laser power interacted with QTF for QEPTS signal excitation. By etching the silver coating on one side of QTF, the reflection structure between the silver coating of the other side of QTF and the external flat mirror was established. The device uses an absorption gas cell with an optical range length of 3 m, making the laser beam interact with the gas more completely and posing more gas concentration information. Acetylene was selected as the target gas to verify the performance of the sensor. The experimental results show that the signal amplitude with a flat mirror was 1.41 times that without a flat mirror, and 2.47 times that of traditional QEPTS sensor. The system has a minimum detection limit (MDL) of 1.10 ppmv, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 7.14 × 10−9 cm−1·W·Hz−1/2. Allan variance analysis results show that when the integration time is 700 s, the MDL of the system is 0.21 ppmv. The proposed gas sensor can play an important role on detecting trace gas in many fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.