Abstract

During development, secreted signaling factors, called morphogens, instruct cells to adopt specific mature phenotypes. However, the mechanisms that morphogen systems employ to establish a precise concentration gradient for patterning tissue architecture are highly complex and are typically analyzed only at long times after secretion (i.e. steady state). We have developed a theoretical model that analyzes dynamically how the intricate transport and signal transduction mechanisms of a model morphogen, Sonic hedgehog (Shh), cooperate in modular fashion to regulate tissue patterning in the neural tube. Consistent with numerous recent studies, the model elucidates how the dynamics of gradient formation can be a key determinant of cell response. In addition, this work yields several novel insights into how different transport mechanisms or ;modules' control pattern formation. The model predicts that slowing the transport of a morphogen, such as by lipid modification of the ligand Shh, by ligand binding to proteoglycans, or by the moderate upregulation of dedicated transport molecules like Dispatched, can actually increase the signaling range of the morphogen by concentrating it near the secretion source. Furthermore, several transcriptional targets of Shh, such as Patched and Hedgehog-interacting protein, significantly limit its signaling range by slowing transport and promoting ligand degradation. This modeling approach elucidates how individual modular elements that operate dynamically at various times during patterning can shape a tissue pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call