Abstract

Epilepsy is the most common form of neurological disease. Patients with epilepsy may experience seizures of a certain duration with or without provocation. Epilepsy analysis can be done with an electroencephalogram (EEG) examination. Observation of qualitative EEG signals generates high cost and often confuses due to the nature of the non-linear EEG signal and noise. In this study, we proposed an EEG signal processing system for EEG seizure detection. The signal dynamics approach to normal and seizure signals' characterization became the main focus of this study. Spectral Entropy (SpecEn) and fractal analysis are used to estimate the EEG signal dynamics and used as feature sets. The proposed method is validated using a public EEG dataset, which included preictal, ictal, and interictal stages using the Naïve Bayes classifier. The test results showed that the proposed method is able to generate an ictal detection accuracy of up to 100%. It is hoped that the proposed method can be considered in the detection of seizure signals on the long-term EEG recording. Thus it can simplify the diagnosis of epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.