Abstract

The intensity of the reflected measuring beam is greatly reduced for laser-Doppler vibrometer (LDV) measurements on rough surfaces since a considerable part of the light is scattered and cannot reach the photodetector (laser speckle effect). The low intensity of the reflected laser beam leads to a so-called signal dropout, which manifests as noise peaks in the demodulated velocity signal. In such cases, no light reaches the detector at a specific time and, therefore, no signal can be detected. Consequently, the overall quality of the signal decreases significantly. In the literature, first attempts and a practical implementation to reduce this effect by signal diversity can be found. In this article, a practical implementation with four measuring heads of a Multipoint Vibrometer (MPV) and an evaluation and optimization of an algorithm from the literature is presented. The limitations of the algorithm, which combines velocity signals, are shown by evaluating our measurements. We present a modified algorithm, which generates a combined detector signal from the raw signals of the individual channels, reducing the mean noise level in our measurement by more than 10 dB. By comparing the results of our new algorithm with the algorithms of the state-of-the-art, we can show an improvement of the noise reduction with our approach.

Highlights

  • With the advancement of laser-Doppler vibrometers (LDVs), various additional applications are continuously made available in which contactless vibration measurement is possible [1,2,3]

  • One limitation in LDV measurements is the impact of the laser speckle effect [6,7,8,9], which leads to so-called signal dropouts [7] on rough or fast-moving surfaces [10]

  • Even though the effect can be utilized for some specific measurement methods [14,15], in most LDV

Read more

Summary

Introduction

With the advancement of laser-Doppler vibrometers (LDVs), various additional applications are continuously made available in which contactless vibration measurement is possible [1,2,3]. One limitation in LDV measurements is the impact of the laser speckle effect [6,7,8,9], which leads to so-called signal dropouts [7] on rough or fast-moving surfaces [10]. In this case, no light reaches the photodetector at a certain point in time and no information about the vibration can be obtained. A reduction of the impact of this effect is desirable

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call