Abstract
In this letter, we propose a deep learning-assisted approach for signal detection in uplink orthogonal frequency-division multiplexing (OFDM) systems over time-varying channels. In particular, we utilize a recurrent neural network (RNN) with bidirectional long short-term memory (LSTM) architecture to achieve signal detection. In addition, with the help of convolutional neural network (CNN) and batch normalization (BN), a new network structure CNN-BN-RNN Network (CBR-Net) is proposed to obtain better performance. The sequence feature information of the OFDM received signal is extracted from big data to successfully train a RNN-based signal detection model, which simplifies the architecture of OFDM systems and can adapt to the change of channel paths. Simulation results also demonstrate that the trained RNN model has the ability to recall the characteristics of wireless time-varying channels and provide accurate and robust signal recovery performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.