Abstract
The application of the power-spectrum model of masking to the detectability of a signal masked by dichotic noise was investigated in three experiments. In each experiment, the signal was a 2-kHz sinusoid of 400-msec duration, masked by either one or two 800-Hz wide bands of noise presented singly or in pairs. In Experiment 1, we compared the detectability of a diotic signal masked by dichotic noise with the detectability of a monaural signal masked by each of the noises separately. The spectrum level of the noise was 35 dB SPL. For dichotic presentations, the signal was sent to both ears while pairs of noise bands, one below and one above the signal frequency, were presented together, one band to each ear. Threshold levels with the dichotic stimuli were lower than or equal to the thresholds with either ear's stimulus on its own. Similar dichotic stimuli were used in Experiment 2, except that the signal frequency was nearer to one or the other of the bands of masking noise, and the noise had a spectrum level of 50 dB SPL. In Experiment 3, thresholds were obtained with two sets of symmetrically and asymmetrically placed notched-noise maskers. For one of these sets, the spectrum level of both noise bands was 35 dB SPL; for the other set, interaural intensity differences were introduced in the form of an inequality in the levels of the noise bands on either side of the signal. In one ear, the spectrum level of the lower frequency noise band was 35 dB SPL and the spectrum level of the higher frequency noise band was 25 dB SPL, whereas in the other ear, the allocation of noise level to noise band was reversed. The dichotic thresholds obtained with the unequal noise maskers could be predicted from the shapes of the auditory filters derived with equal noise maskers. The data from all three experiments suggest that threshold signal levels in the presence of interaural differences in masker intensity depend principally on the ear with the higher signal-to-masker ratio at the output of its auditory filter, a finding consistent with the power-spectrum model of masking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.