Abstract

Shrinkage of the empirical wavelet coefficients is an effective way to de-noise signals possessing sparse wavelet transforms. This article outlines a Bayesian approach to wavelet shrinkage, in which the form of the shrinkage function is induced by a particular choice of prior distributions placed on the wavelet coefficients. Our priors are chosen to be mixtures of two normal distributions, one wide and the other narrow, so as to effectively model the sparseness inherent in the wavelet representations of many signals. This particular choice of prior also allows us to obtain a closed-form expression for the shrinkage function (posterior mean) and for the corresponding uncertainty (posterior variance). This uncertainty information is used in turn to generate uncertainty bands for the full signal reconstruction. An automatic, level-dependent scheme is used to adapt the shrinkage functions to each resolution level of coefficients, although subjective information may be incorporated quite easily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.