Abstract

The properties of synapses between retinal neurons make an essential contribution to early visual processing. Light produces a graded hyperpolarization in photoreceptors, up to 25 mV in amplitude, and it is conventionally assumed that all of this response range is available for coding visual information. We report here, however, that the rod output synapse rectifies strongly, so that only potential changes within 5 mV of the rod dark potential are transmitted effectively to postsynaptic horizontal cells. This finding is consistent with the voltage-dependence of the calcium current presumed to control neurotransmitter release from rods. It suggests functional roles for the strong electrical coupling of adjacent rods and the weak electrical coupling of adjacent rods and cones. The existence of photoreceptor coupling resolves the apparent paradox that rods have a 25 mV response range, while signals greater than 5 mV in amplitude are clipped during synaptic transmission. We predict that the strengths of rod-rod and rod-cone coupling are quantitatively linked to the relationship between the rod response range and the synapse operating range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.