Abstract

In this study, we developed an enzyme-based miniaturized fluorescence biosensor to detect paraoxon, one of the most well-known neurotoxic organophosphorus compounds. The biosensor was fabricated with poly(ethylene glycol) (PEG) hydrogel microarrays that entrapped acetylcholinesterase (AChE) and quantum dots (QDs) as fluorescence reporters. Metal-enhanced fluorescence (MEF) was utilized to amplify the fluorescence signal, which was achieved by decorating QDs on the surface of silica-coated silver nanoparticles (Ag@Silica). The MEF effects of Ag@Silica were optimized by tuning the thickness of the silica shells, and under the optimized conditions, the fluorescence intensity was shown to be increased 5 fold, compared with the system without MEF. PEG hydrogel microarray entrapping QD-decorated Ag@Silica and AChE was prepared via photopatterning process. The entrapped AChE hydrolyzed paraoxon to produce p-nitrophenol within the hydrogel microstructure, which subsequently quenched the fluorescence of the QDs on the surface of Ag@Silica. The MEF-assisted fluorescence detection resulted in a significant enhancement of paraoxon detection. The detection limit was approximately 1.0 × 10−10 M and 2.0 × 10−7 M for sensing with and without MEF, respectively. The successful integration of a hydrogel microarray system with a microfluidic system was demonstrated to be a potential application for the MEF-based micro-total-analysis-system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.