Abstract

The extensive use of antibiotics has rapidly spread antibiotic resistance, which poses significant health risks to humans. Unfortunately, despite this pressing issue, there is still a lack of a reliable on-site detection method for the residues of antibiotics, such as nilutamide (Nlu). Consequently, there is an urgent need to develop and perfect such a detection method to effectively monitor and control antibiotic residues. In this study, the hydrothermal development of copper-metal-organic framework (Cu-MOF) polyhedrons on the functionalized carbon nanofiber (f-CNF) matrix allowed for the detection of Nlu in biological liquids via a sensitive amperometry technique. Further electrochemical detection of Nlu took place with the cyclic voltammetry (CV) technique Cu-MOF/f-CNF. Analytical and spectroscopic approaches were used to confirm the successful synthesis of Cu-MOF/f-CNF. The prepared material was decorated on the surface of GCE and performed as an electrochemical Nlu sensor, with a broad linear range of 0.01 to 141.4 μM and 2 nM as a lower limit of detection. In addition, the composites had a large surface area and many dedicated sites, which improved electrocatalysis. In practical applications, Cu-MOF/f-CNF/GCE provides a novel strategy for improving electrochemical activity by measuring Nlu concentrations in biological samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.