Abstract

Detection of nucleic acids with signal amplification is preferable in clinical diagnosis. A novel approach was developed for signal amplification by coupling invasive reaction with hyperbranched rolling circle amplification (HRCA). Invasive reaction, which does not rely on specific recognition sequences in a target but a specific structure formed by the specific binding of an upstream probe and a downstream probe to a target DNA, can generate thousands of flaps from one target DNA; then the flaps are ligated with padlock probes to form circles, which are the templates of HRCA. As HRCA amplicon sequence is free of target DNA sequence, signal amplification is achieved. Because flap sequence is the same to any target of interest, HRCA is universal; the detection cost is hence greatly reduced. The sensitivity of the proposed method is less than 1 fM artificial DNA targets; and the specificity of the method is high enough to discriminate one base difference in the target sequence. The feasibility was verified by detecting real biological samples from HBV carriers, indicating that the method is highly sensitive, cost-effective, and has a low risk of cross-contamination from amplicons. These properties should give great potential in clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.