Abstract

A novel concept is introduced for signal amplification in electrochemical sensing: the electro-oligomerisation stripping voltammetry, which has been applied here to the improved detection of the isoproturon herbicide in spring waters as a proof-of-principle. It involves a potentiostatic accumulation step onto a glassy carbon electrode (at +1.5 V vs Ag/AgCl reference electrode for 300 s) leading to the formation of an oligomeric film, which is then detected by cathodic stripping square wave voltammetry (SWV). The presence and composition of the film are confirmed by confocal Raman spectroscopy. Its characterisation by cyclic voltammetry demonstrates the reversible nature of the electrodeposited material, confirming its interest for sensitive detection by SWV. Adding a mesoporous silica membrane with vertically oriented nanochannels further enhances the sensitivity of the sensor, exhibiting a linear response in the 10–100 μM concentration range. This effect was even more interesting for real media analysis thanks to the permselective properties of such nanoporous coating in rejecting interferences and/or surface fouling agents. The method should be applicable to other analytes that are usually not detectable by conventional accumulation/stripping voltammetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.