Abstract
PurposeTo compare in vivo glutamate-weighted chemical exchange saturation transfer (GluCEST-weighted) signal changes between in a rat model of demyelinated multiple sclerosis and control groups. ProceduresUsing a pre-clinical 7 T magnetic resonance imaging (MRI) system, CEST imaging was applied to a toxin (lysophosphatidylcholine; LPC) induced rat (MSLPC) and control (CTRL) groups to compare in vivo glutamate signal changes. The GluCEST-weighted signals were analyzed based on the magnetization transfer ratio asymmetry approach at 3.0 ppm on the region-of-interests (ROIs) in the corpus callosum and hippocampus at each hemispheric region. ResultsGluCEST-weighted signals were significantly changed between the CTRL and MSLPC groups, while higher glutamate signals were indicated in the MSLPC than the CTRL group ([MSLPC / CTRL]; hippocampus: [6.159 ± 0.790 / 4.336 ± 0.446] and corpus callosum: [-3.545 ± 0.945 / -6.038 ± 0.620], all p = 0.001). ConclusionsOur results show increased GluCEST-weighted signals in the LPC-induced demyelination rat brain compared with control. GluCEST-weighted imaging could be a useful tool for defining a biomarker to estimate the glutamate-related metabolism in MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.