Abstract

We propose a message-passing algorithm to compute the Hamiltonian expectation with respect to an appropriate class of trial wave functions for an interacting system of fermions. To this end, we connect the quantum expectations to average quantities in a classical system with both local and global interactions, which are related to the variational parameters and use the Bethe approximation to estimate the average energy within the replica-symmetric approximation. The global interactions, which are needed to obtain a good estimation of the average fermion sign, make the average energy a nonlocal function of the variational parameters. We use some heuristic minimization algorithms to find approximate ground states of the Hubbard model on random regular graphs and observe significant qualitative improvements with respect to the mean-field approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.