Abstract

Previous studies have demonstrated that sigma-1 receptor plays important roles in the induction phase of rodent neuropathic pain; however, whether it is involved in bone cancer pain (BCP) and the underlying mechanisms remain elusive. The aim of this study was to examine the potential role of the spinal sigma-1 receptor in the development of bone cancer pain. Walker 256 mammary gland carcinoma cells were implanted into the intramedullary space of the right tibia of Sprague-Dawley rats to induce ongoing bone cancer-related pain behaviors; our findings indicated that, on days 7, 10, 14, and 21 after operation, the expression of sigma-1 receptor in the spinal cord was higher in BCP rats compared to the sham rats. Furthermore, intrathecal injection of 120 nmol of sigma-1 receptor antagonist BD1047 on days 5, 6, and 7 after operation attenuated mechanical allodynia as well as the associated induction of c-Fos and activation of microglial cells, NR1, and the subsequent Ca2+-dependent signals of BCP rats. These results suggest that sigma-1 receptor is involved in the development of bone cancer pain and that targeting sigma-1 receptor may be a new strategy for the treatment of bone cancer pain.

Highlights

  • Previous studies have demonstrated that sigma-1 receptor plays important roles in the induction phase of rodent neuropathic pain; whether it is involved in bone cancer pain (BCP) and the underlying mechanisms remain elusive

  • Walker 256 mammary gland carcinoma cells were implanted into the intramedullary space of the right tibia of Sprague-Dawley rats to induce ongoing bone cancer-related pain behaviors; our findings indicated that, on days 7, 10, 14, and 21 after operation, the expression of sigma-1 receptor in the spinal cord was higher in BCP rats compared to the sham rats

  • BCP rats displayed a significant decrease in paw withdrawal threshold (PWT) of the ipsilateral hind paw compared with sham rats on day 5 (P < 0.01; Figure 1)

Read more

Summary

Introduction

Previous studies have demonstrated that sigma-1 receptor plays important roles in the induction phase of rodent neuropathic pain; whether it is involved in bone cancer pain (BCP) and the underlying mechanisms remain elusive. Intrathecal injection of 120 nmol of sigma-1 receptor antagonist BD1047 on days 5, 6, and 7 after operation attenuated mechanical allodynia as well as the associated induction of c-Fos and activation of microglial cells, NR1, and the subsequent Ca2+-dependent signals of BCP rats. These results suggest that sigma-1 receptor is involved in the development of bone cancer pain and that targeting sigma-1 receptor may be a new strategy for the treatment of bone cancer pain. We tested whether intrathecal administration of the selective sigma-1 receptor antagonist BD1047 could suppress mechanical allodynia and the activation of spinal microglia as well as NR1 and the subsequent Ca2+dependent signals of BCP rats

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call