Abstract

A calculation of the current-quark mass dependence of hadron masses can help in using observational data to place constraints on the variation of nature's fundamental parameters. A hadron's sigma-term is a measure of this dependence. The connection between a hadron's sigma-term and the Feynman-Hellmann theorem is illustrated with an explicit calculation for the pion using a rainbow-ladder truncation of the Dyson-Schwinger equations: in the vicinity of the chiral limit sigma_pi = m_pi/2. This truncation also provides a decent estimate of sigma_rho because the two dominant self-energy corrections to the rho-meson's mass largely cancel in their contribution to sigma_rho. The truncation is less accurate for the omega, however, because there is little to compete with an omega->rho+pi self-energy contribution that magnifies the value of sigma_omega by ~25%. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is solved to obtain the current-quark mass dependence of the masses of the nucleon and Delta, and thereby sigma_N and sigma_Delta. This "quark-core" piece is augmented by the "pion cloud" contribution, which is positive. The analysis yields sigma_N~60MeV and sigma_Delta~50MeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.