Abstract
This letter presents Sigma-FP, a novel 3D reconstruction method to obtain the floor plan of a multi-room environment from a sequence of RGB-D images captured by a wheeled mobile robot. For each input image, the planar patches of visible walls are extracted and subsequently characterized by a multivariate Gaussian distribution in the convenient Plane Parameter Space. Then, accounting for the probabilistic nature of the robot localization, we transform and combine the planar patches from the camera frame into a 3D global model, where the planar patches include both the plane estimation uncertainty and the propagation of the robot pose uncertainty. Additionally, processing depth data, we detect openings (doors and windows) in the wall, which are also incorporated in the 3D global model to provide a more realistic representation. Experimental results, in both real-world and synthetic environments, demonstrate that our method outperforms state-of-the-art methods, both in time and accuracy, while just relying on Atlanta world assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.