Abstract
Neonatal PMN (polymorphonuclear neutrophils) exhibit altered inflammatory responsiveness and greater longevity compared with adult PMN; however, the involved mechanisms are incompletely defined. Receptors containing immunoreceptor tyrosine-based inhibitory motif (ITIM) domains promote apoptosis by activating inhibitory phosphatases, such as Src homology domain 2-containing tyrosine phosphatase-1 (SHP-1), that block survival signals. Sialic acid-binding immunoglobulin-like lectin (Siglec)-9, an immune inhibitory receptor with an ITIM domain, has been shown to induce cell death in adult PMN in association with SHP-1. To test our hypothesis that neonatal PMN inflammatory function may be modulated by unique Siglec-9 and SHP-1 interactions, we compared expression of these proteins in adult and neonatal PMN. Neonatal PMN exhibited diminished cellular expression of Siglec-9, which was phosphorylated in the basal state. Granulocyte-macrophage colony-stimulating factor (GM-CSF) treatment decreased Siglec-9 phosphorylation levels in neonatal PMN but promoted its phosphorylation in adult PMN, observations associated with altered survival signaling. Although SHP-1 expression was also diminished in neonatal PMN, GM-CSF treatment had minimal effect on phosphorylation status. Further analysis revealed that Siglec-9 and SHP-1 physically interact, as has been observed in other immune cells. Our data suggest that age-specific interactions between Siglec-9 and SHP-1 may influence the altered inflammatory responsiveness and longevity of neonatal PMN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.