Abstract

Tumor-associated macrophages especially M2 phenotype macrophages play an important role in tumor progression and the formation of immunosuppressive tumor microenvironment. Previous studies indicated that infiltration of a large number of M2-macrophages was positively associated with a low survival rate and poor prognosis of patients with pancreatic ductal cancer. However, the mechanisms responsible for M2-macrophage polarization remain unclear. Recently, Siglec-15 appears as an emerging target for the normalization of the tumor immune microenvironment. Hence, we detected the Sigelc-15 expression on macrophages by using qPCR and Western blot assay and found that the expression of Siglec-15 was upregulated on M2 macrophages induced by IL-4 and conditioned media from pancreatic ductal cancer. In addition, after knocking out Siglec-15, the expression of M2 phenotype macrophage biomarkers such as Arg1 and CD206 was significantly downregulated. Besides, in our study we also found that Siglec-15 could upregulate the glycolysis of macrophage possibly by interacting with Glut1 to regulate the M2-macrophage polarization. The regulation was also partly dependent on STING, and Glut1-related glycose metabolism was involved in regulating cGAS/STING signaling. When utilizing a subcutaneous transplantation mouse model, we observed that knocking out of Siglec-15 or co-injecting tumor cells with macrophage from Siglec-15 KO mice could significantly inhibit the growth of subcutaneous tumors in mice. Taken together, these findings suggest that Siglec-15 is essential for the M2-macrophage polarization to shape an immune suppressive tumor microenvironment in pancreatic cancer and makes it an attractive target for pancreatic cancer immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call