Abstract

The experimental demonstration of Ge1-xSnx alloys lasers opened group-IV materials towards high-performance electronic and photonic devices that can be easily integrated with the current Si semiconductor technology. In recent years, GeSn-based optoelectronic devices including light-emitting and detectors, modulators, and CMOS have been proven.The major challenges for the Ge1-xSnx epitaxy arise from the low solid solubility of Sn in Ge, the large lattice mismatch, and the reduced thermal stability between Ge and Sn. All these are becoming extremely critical at higher Sn contents. Non-equilibrium conditions offered by molecular beam epitaxy (MBE), chemical vapor deposition (CVD), flash lamp, or laser annealing have been lately investigated. Between them, CVD is to date the preferred growth technique for its current development compatible with the industry offering micron-thick layers with the highest crystal quality.While Tin-tetrachloride (SnCl4) becomes the standard Sn precursor, for Ge different gasses, like germane (GeH4) and digermane (Ge2H6) are used attempting to archive high Sn incorporation and high material quality. While Ge1-xSnx films with the same high Sn content can be obtained regardless of the used precursor, the advantages and disadvantages of each precursor are discussed in this work. The use of Ge2H6 is accompanied by high growth rates, being favorable in applications where relatively thick films are needed, such as laser structures. On the other hand, with a relatively low growth rate, GeH4 provides a greater thickness control, achieving clear and sharp interfaces in heterostructures. For this reason, GeH4 is the appropriate precursor for quantum transport or spintronic.The biggest challenge in heterostructure designs is going up and down in Sn content. The growth of a Ge1-ySny on a Ge1-xSnx, y<x, or SiGeSn layer cannot be performed by increasing the growth temperature. Post-annealing processes lead to strong crystallinity degradation of the already grown layer by strong Sn diffusion or Sn segregation due to the limited thermal stability of Ge1-xSnx alloys.In this work, we address simple methodologies to enhance the gradient or step Sn content without changing the process temperature. Controlling only the carrier gas flow while keeping the standard growth parameters constant, high-quality Ge1-xSnx alloys with uniform Sn content up to 15 at.% are obtained. The proposed method acts as guidance to produce Ge1-xSnx heterostructures that can be extended to any CVD reactor, independently of the used precursor, GeH4 or Ge2H6. Different devices structures are presented proving the applicability of the isothermal multilayer growth. Figure 1

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call