Abstract

The development of large superconducting bolometer (Transition Edge Sensor: TES) arrays requires ultra low noise amplification and multiplexing electronics. The use of a first transducer stage such as a SQUID (Superconducting QUantum Interference Device) allows ultimate performance in terms of noise. However, the linearization of the SQUID characteristic requires low noise amplification. Furthermore, to realize a time domain multiplexer with SQUIDs, switched biasing is also needed. We have designed an Integrated Circuit (IC) in standard BiCMOS SiGe technology for the readout and the control of a SQUID multiplexer. It includes a low noise amplifier with multiplexed inputs, switched current sources for SQUIDs, and digital circuit for the addressing with only one room temperature clock signal. We have successfully tested this integrated circuit down to 2 K. To validate the operation of a SQUID multiplexer controlled by this SiGe cryogenic IC, we have developed a 2×2 SQUID hybrid demonstrator. It consists of four commercial SQUIDs connected to a SiGe IC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.