Abstract

Inactivation of the sigC gene (sll0184), encoding the group 2 sigma factor SigC, leads to a heat-sensitive phenotype of Synechocystis sp. PCC 6803. Cells of the DeltasigC strain grew poorly at 43 degrees C at pH 7.5 under ambient CO(2) conditions. Addition of inorganic carbon in the form of 3 % CO(2) or use of an alkaline growth medium (pH 8.3) restored the growth of the DeltasigC strain at 43 degrees C. These treatments compensate for the low concentration of inorganic carbon at high temperature. However, addition of organic carbon as glucose, pyruvate, succinate or 2-oxoglutarate did not restore growth of the DeltasigC strain at 43 degrees C. In the control strain, the amount of the SigC factor diminished after prolonged incubation at 43 degrees C if the pH of the growth medium was 7.5 or 6.7. Under alkaline conditions, the amount of the SigC factor remained constant at 43 degrees C and cells of the control strain grew better than at pH 7.5 or pH 6.7. The pH dependence of high-temperature growth was associated with changes in photosynthetic activity, indicating that the SigC factor is involved in adjustment of photosynthesis according to the amount of available inorganic carbon. Our results indicate that acclimation to low inorganic carbon is a part of acclimation to prolonged high temperature and that the SigC factor has a central role in this acclimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.