Abstract
In addition to contributing to immune exclusion at mucosal surfaces, secretory IgA (SIgA) made of polymeric IgA and secretory component is able to selectively reenter via microfold cells into Peyer's patches (PPs) present along the intestine and to associate with dendritic cells (DCs) of the CD11c+CD11b+MHCII+F4/80−CD8−phenotype in the subepithelial dome region and the draining mesenteric lymph nodes (MLNs). However, the nature of the receptor(s) for SIgA on murine PP and MLN DCs is unknown. We find that glycosylated secretory component moiety and polymeric IgA are both involved in the specific interaction with these cells. Using blocking antibodies and competition experiments, we identify Dectin-1 and specific intercellular adhesion molecule-3 grabbing non-integrin receptor 3 (SIGNR3) as receptors for SIgA. While SIgA-commensal immune complexes (ICs) contribute to local homeostasis upon interaction with mucosal DCs, the picture is less clear for pathogenic agents. We find that in comparison with incubation of Shigella flexneri alone, association of the enteropathogen with SIgA prompts freshly isolated DCs from PPs and MLNs to invert the production of pro- versus non-inflammatory cytokines/chemokines. The sum of the data suggests that in contrast to IgG-based ICs boosting immune reactivity of antigen-presenting cells, SIgA produced during an ongoing immune response can, in addition to its known function of immune exclusion, modulate mucosal DC conditioning via specific interaction with Dectin-1 and SIGNR3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.