Abstract
Somatic tumors have a high-dimensional, sparse, and small sample size nature, making cancer subtype stratification based on somatic genomic data a challenge. Current methods for improving cancer clustering performance focus on dimension reduction, integrating multi-omics data, or generating realistic samples, yet ignore the associations between mutated genes within the patient-gene matrix. We refer to these associations as gene mutation structural information, which implicitly includes cancer subtype information and can enhance subtype clustering. We introduce a novel method for cancer subtype clustering called SIG(Structural Information within Graph). As cancer is driven by a combination of genes, we establish associations between mutated genes within the same patient sample, pair by pair, and use a graph to represent them. An association between two mutated genes corresponds to an edge in the graph. We then merge these associations among all mutated genes to obtain a structural information graph, which enriches the gene network and improves its relevance to cancer clustering. We integrate the somatic tumor genome with the enriched gene network and propagate it to cluster patients with mutations in similar network regions. Our method achieves superior clustering performance compared to SOTA methods, as demonstrated by clustering experiments on ovarian and LUAD datasets. The code is available at https://github.com/ChangSIG/SIG.git.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.