Abstract

Scale Invariant Feature Transform is a widely used image descriptor, which is distinctive and robust in real-world applications. However, the high dimensionality of this descriptor causes computational inefficiency when there are a large number of points to be processed. This problem has led to several attempts at developing more compact SIFT-like descriptors, which are suitable for faster matching while still retaining their outstanding performance. This paper focuses on the SIFT descriptor and explore a dimensionality reduction for its local representation. By using the manifold learning algorithm of Locality Preserving Projections, a more effective and efficient descriptor LPP-SIFT can be obtained. A large number of experiments have been carried out to demonstrate the effectiveness of LPP-SIFT. Besides, the practicability of LPP-SIFT is also shown in another set of experiments for image similarity measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.