Abstract
Scale-invariant feature transform (SIFT), which represents a general purpose image descriptor, has been extensively used in the field of biometric recognition. Focusing on iris biometrics, numerous SIFT-based schemes have been presented in past years, offering an alternative approach to traditional iris recognition, which are designed to extract discriminative binary feature vectors based on an analysis of pre-processed iris textures. However, the majority of proposed SIFT-based systems fails to maintain the recognition accuracy provided by generic schemes. Moreover, traditional systems outperform SIFT-based approaches with respect to other key system factors, i.e. authentication speed and storage requirement. In this work, we propose a SIFT-based iris recognition system, which circumvents the drawbacks of previous proposals. Prerequisites, derived from an analysis of the nature of iris biometric data, are utilized to construct an improved SIFT-based baseline iris recognition scheme, which operates on normalized enhanced iris textures obtained from near-infrared iris images. Subsequently, different binarization techniques are introduced and combined to obtain binary SIFT-based feature vectors from detected keypoints and their descriptors. On the CASIAv1, CASIAv4-Interval and BioSecure iris database, the proposed scheme maintains the performance of different traditional systems in terms of recognition accuracy as well as authentication speed. In addition, we show that SIFT-based features complement those extracted by traditional schemes, such that a multi-algorithm fusion at score level yields a significant gain in recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.