Abstract

The stability of aqueous zinc metal batteries is significantly affected by side reactions and dendrite growth on the anode interface, which primarily originate from water and anions. Herein, we introduce a multi H-bond site additive, 2, 2'-Sulfonyldiethanol (SDE), into an aqueous electrolyte to construct a sieving-type electric double layer (EDL) by hydrogen bond interlock in order to address these issues. On the one hand, SDE replaces H2O and SO42- anions that are adsorbed on the zinc anode surface, expelling H2O/SO42- from the EDL and thereby reducing the content of H2O/SO42- at the interface. On the other hand, when Zn2+ are de-solvated at the interface during the plating, the strong hydrogen bond interaction between SDE and H2O/SO42- can trap H2O/SO42- from the EDL, further decreasing their content at the interface. This effectively sieves them out of the zinc anode interface and inhibits the side reactions. Moreover, the unique characteristics of trapped SO42- anions can restrict their diffusion, thereby enhancing the transference number of Zn2+ and promoting dendrite-free deposition and growth of Zn. Consequently, utilizing an SDE/ZnSO4 electrolyte enables excellent cycling stability in Zn//Zn symmetrical cells and Zn//MnO2 full cells with lifespans exceeding 3500 h and 2500 cycles respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.