Abstract
This paper considers semiparametric two-step GMM estimation and inference with weakly dependent data, where unknown nuisance functions are estimated via sieve extremum estimation in the first step. We show that although the asymptotic variance of the second-step GMM estimator may not have a closed form expression, it can be well approximated by sieve variances that have simple closed form expressions. We present consistent or robust variance estimation, Wald tests and Hansen’s (1982) over-identification tests for the second step GMM that properly reflect the first-step estimated functions and the weak dependence of the data. Our sieve semiparametric two-step GMM inference procedures are shown to be numerically equivalent to the ones computed as if the first step were parametric. A new consistent random-perturbation estimator of the derivative of the expectation of the non-smooth moment function is also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.