Abstract
In this paper, we consider a class of partially linear transformation models with interval-censored competing risks data. Under a semiparametric generalized odds rate specification for the cause-specific cumulative incidence function, we obtain optimal estimators of the large number of parametric and nonparametric model components via maximizing the likelihood function over a joint B-spline and Bernstein polynomial spanned sieve space. Our specification considers a relatively simpler finite-dimensional parameter space, approximating the infinite-dimensional parameter space as n → ∞, thereby allowing us to study the almost sure consistency, and rate of convergence for all parameters, and the asymptotic distributions and efficiency of the finite-dimensional components. We study the finite sample performance of our method through simulation studies under a variety of scenarios. Furthermore, we illustrate our methodology via application to a dataset on HIV-infected individuals from sub-Saharan Africa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.