Abstract
Exclusive studies of sideways-peaked angular distributions for intermediate-mass fragments (IMFs) produced in hadron-induced reactions have been performed with the Indiana silicon sphere (ISiS) detector array. The effect becomes prominent for beam momenta above about $10\mathrm{GeV}/c.$ Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward peaked to nearly isotropic as the fragment energy decreases. Fragment-fragment correlation studies show no evidence for a preferred angle that might signal a fast dynamic breakup mechanism. Moving-source and intranuclear cascade simulations suggest a possible kinematic origin arising from significant transverse momentum imparted to the recoil nucleus during the fast cascade. A two-step cascade and statistical multifragmentation calculation is consistent with the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.