Abstract

AbstractAeolian sand transport is a widespread physical phenomenon on the surface of Earth, as well as on Mars and Titan. Accurate measurements of the components of the transport system are necessary if we are to understand the nature of the physical processes. Sand traps are typically used to measure sediment transport rates, and issues associated with the sampling efficiency of traps and the development of reliable traps have received considerable attention in recent decades. In this study, we measured aeolian transport rate at five distances from a wind tunnel sidewall using a vertically‐segmented sand trap. Total transport rates were determined by weighing the bed sediment before and after each experiment, and with and without a trap installed. The following results were obtained: (1) sand transport increased linearly with the distance away from the sidewall, and the appropriate location to measure maximum transport is within the central 20% of the wind tunnel; (2) current methods overestimate the sampling efficiency of sand traps when comparing trap data to transport rate data obtained by weighing sand moved through the entire tunnel because the effects of the sidewalls in decreasing total transport are neglected; (3) the efficiency of the vertically‐segmented trap that we tested ranged from 11.57% to 31.68% using our revised methods, whereas standard methods caused efficiency to be overestimated by 32–72% of the efficiency; (4) using either method, the efficiency of the trap increased exponentially with shear velocity for the range we used. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.