Abstract

ABSTRACTStudying open channel flow and sediment transport in narrow flumes under non-uniform flow conditions, both sidewall and non-uniformity corrections are required for bed-shear stress. This research first reviews conventional predictive methods for bed-shear stress, including the flow-depth method, the hydraulic radius method and Einstein's sidewall correction. It then presents a novel procedure for sidewall and non-uniformity corrections based on a recent cross-sectional velocity distribution model. These methods are compared with data from the log-law under uniform and non-uniform, sub- and supercritical flow conditions, indicating that (i) the flow-depth and the hydraulic radius methods specify the upper and lower bounds for bed-shear stress; (ii) although Einstein's procedure causes a paradox for smooth flumes, it agrees with data from rough beds; and (iii) the proposed is better than Einstein's for subcritical flow, but the latter has advantage for supercritical flow. As an application, sediment inception under non-uniform flow conditions is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.