Abstract

Previous investigations have shown significant sorption of siderophores to the solid phase in soils, and clay surfaces in particular. The ability of plants to utilize Fe from this reservoir is therefore of great interest. This research focused on the ability of the hydroxamate siderophore ferrioxamine B (FOB) sorbed to Ca-montmorillonite – prevailing in soils – to supply Fe to peanuts (Arachis hypogeae L.). Remediation of Fe deficiency by the sorbed siderophore was found to be similar to that by the free (unsorbed) form. The concentration needed to achieve complete remediation of chlorosis was one order of magnitude higher than that of the optimal FeEDDHA [Fe-ethylenediamine-di(o-hydroxyphenylacetic acid)]. Using dialysis tubes, it was shown that Fe uptake from the sorbed siderophore is executed mainly via long-range pathways and does not require close proximity to the plant roots. It was hypothesized that the process involves chelating agents in solution, which transport the Fe from the immobilized siderophore and enable its uptake by the plant. Under calcareous conditions, the ability of the sorbed FOB to supply Fe was significantly impaired, probably as a result of inactivation of the bridging mechanism. Various possible shuttle compounds were examined. EDDHA was found to be a very efficient shuttle compound, which caused complete remediation of Fe deficiency, even under very harsh calcareous conditions. The findings support our hypothesis and imply the effectiveness of a ligand-exchange mechanism to strategy I plants (commonly attributed to strategy II plants). We suggest that the secretion of substances with chelating abilities, which is usually considered a less effective means of Fe acquisition mechanism, takes on more importance in this context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.