Abstract
Siderophores are iron chelators with low molecular weight secreted by microorganisms. Siderophores have the potential to become natural iron fortifiers. To explore the feasibility of the application of Synechococcus sp. PCC7002-derived siderophores as iron fortifiers, Synechococcus sp. PCC7002, as a carrier, was fermented to produce siderophores. The absorption mechanism and anemia intervention effect of siderophores-chelated iron (SCI) were studied through the polarized Caco-2 Cell monolayers and the rat model of iron-deficiency anemia, respectively. The results indicated that siderophores (from Synechococcus sp. PCC7002) had an enhancing effect on iron absorption in polarized Caco-2 cell monolayers. The main absorption site of SCI was duodenum with pH 5.5, and the absorption methods included endocytosis and DMT1, with endocytosis being dominant. The effect of sodium phytate on SCI was less than that of ferrous sulfate. Therefore, SCI could resist inhibitory iron absorption factors in polarized Caco-2 cell monolayers. SCI showed significantly higher relative bioavailability (133.58 ± 15.42%) than ferrous sulfate (100 ± 14.84%) and ferric citrate (66.34 ± 8.715%) in the rat model. Food intake, hemoglobin concentration, and hematocrit and serum iron concentration of rats improved significantly after Fe-repletion. Overall, this study indicated that siderophores derived from Synechococcus sp. PCC7002 could be an effective and feasible iron nutritive fortifier.
Highlights
Iron plays an important role in maintaining normal human metabolism and is essential for most organisms [1]
This study indicated that siderophores derived from Synechococcus sp
Iron-deficiency anemia (IDA) caused by iron deficiency could lead to multiple pathologies, especially delays in development and behavior among children [2,3,4]
Summary
Iron plays an important role in maintaining normal human metabolism and is essential for most organisms [1]. Iron deficiency is a ubiquitous micronutrient deficiency worldwide. Iron deficiency and IDA arise when requirements cannot be met by dietary iron, in developing countries, primarily due to insufficient iron content in food and low iron absorption efficiency. This is because iron digestion and absorption are often inhibited by the various dietary components, such as oxalates and phytate. Ferrous sulfate could affect appetite and digestion due to its side effects on the stomach, and ferric sodium EDTA is a synthetic chelating agent, the safety of which is a concern for the public, resulting in
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.