Abstract

Side-chain polymers have the potential to be excellent dopant-free hole-transporting materials (HTMs) for perovskite solar cells (PSCs) because of their unique characteristics, such as tunable energy levels, high charge mobility, good solubility, and excellent film-forming ability. However, there has been less research focusing on side-chain polymers for PSCs. Here, two side-chain polystyrenes with triphenylamine substituents on carbazole moieties were designed and characterized. The properties of the side-chain polymers were tuned finely, including the photophysical and electrochemical properties and charge mobilities, by changing the positions of triphenylamine substituents on carbazole. Owing to the higher mobility and charge extraction ability, the polymer P2 with the triphenylamine substituent on the 3,6-positions of the carbazole unit showed higher performance with power conversion efficiency (PCE) of 18.45%, which was much higher than the PCE (16.78%) of P1 with 2,7-positions substituted. These results clearly demonstrated that side-chain polymers can act as promising HTMs for PSC applications and the performance of side-chain polymers could be optimized by carefully tuning the structure of the monomer, which provides a new strategy to design new kinds of side-chain polymers and obtain high-performance dopant-free HTMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.