Abstract

Three types of random copolymers with 94 mol % (R)-3-hydroxybutyric acid (3HB) and 6 mol % (R)-3-hydroxyalkanoic acids with different side-chain lengths, (R)-3-hydroxypentanoic acid (3HV), (R)-3-hydroxyhexanoic acid (3HHx), and medium-chain-length (R)-3-hydroxyalkanoic acids (mcl-3HA, C8-C12), were prepared by biological synthetic techniques. The solid-state structure and thermal properties of melt-crystallized films for copolymers were characterized by means of wide-angle X-ray diffraction, small-angle X-ray scattering, differential scanning calorimetry, and optical microscopy. The randomly distributed second monomer units, except for 3HV in copolyesters, act as defects of the P(3HB) crystal and are excluded from the P(3HB) crystalline lamellae. The lamellar thickness of copolymers decreased with an increase in the side-chain length of second monomer units. In addition, the growth rate of spherulites decreased with an increase in the carbon numbers of second monomer units at an identical crystallization temperature. These results indicate that a steric bulkiness of the second monomer unit affects the crystallization of (R)-3HB segments in random copolyesters. An enzymatic degradation test of melt-crystallized copolymer films was carried out in the presence of PHB depolymerase from Alcaligenes faecalis T1. Erosion rate of copolyesters was dependent on both the crystallinity and the lamellar thickness of samples. As the result, the rate of enzymatic degradation for copolymer films increased with an increase in the carbon numbers of second monomer units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.