Abstract

Cis-trans isomerization of amide bonds impedes de novo design of folded peptoids (poly-N-substituted glycines) with precise secondary structures and affects peptoid-biomolecule binding affinity. Herein, from X-ray, NMR and DFT studies of azapeptoids, we have discovered a tetrel bonding interaction that stabilizes trans-peptoids. We show that peptoids having α-heteroatoms and N-aryl groups in the sidechain adopt trans-amide geometries due to the presence of a nX /πAr →σ*Cα-N tetrel bonding interaction between the sidechain α-heteroatom lone pair (nX ) or π-electrons (πAr ) and the σ* orbital of the backbone Cα -N bond. Further, CD spectroscopic studies of oligo-proline host-guest model peptides showed that azapeptoid residues stabilize polyproline II helical conformation. These data indicate that the sidechain-backbone tetrel bonding could be leveraged to design peptoids with precise secondary structures for a wide range of biological and material applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call